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Natural convection in a horizontal circular cylinder 

By SHELDON WEINBAUM 
Spcrry Rand Research Center, Sudbury, Mass. 

(Received 6 August 1963) 

In  this paper we examine the steady, two-dimensional convective motion 
which occurs in a horizontal circular cylinder whose wall is non-uniformly 
heated. One observes several qualitatively different physical phenomena de- 
pending on the wall temperature distribution and the value of the Rayleigh 
number. The low-Rayleigh-number behaviour for the single convective cell 
heated from below is related to the classical Rayleigh stability problem. The 
critical Rayleigh number for the single circular cell is approximately five times 
the value for Rayleigh’s multi-cellular configuration. The flow which exhibits a 
nearly parabolic velocity profile near the critical Rayleigh number, gradually 
changes to a rigidly-rotating-core behaviour as the Rayleigh number increases. 
The speed of core rotation is a function of the Prandtl number, whereas the 
boundary-layer thickness is primarily a function of the Rayleigh number. 
When the heating is from side tpo side, the solution shows that as the Rayleigh 
number increases the core motion is progressively arrested leaving a narrow 
circulating band of fluid adjacent to the wall. An oblique heating produces a 
hybrid phenomenon, a low-Rayleigh-number behaviour which is characteristic 
of the sideways heating case and a high-Rapleigh-number interior motion 
characteristic of the bottom heating case. To determine the core motion in the 
high-Rayleigh-number limit, Batchelor’s work concerning the uniqueness of 
incompressible, exactly steady, closed streamline flows with small viscosity is 
extended to include flows with small thermal conductivity. 

1. Introduction 
I n  recent years, because of important heat transfer application in building 

insulation techniques and nuclear reactor boiler design, special attention has 
been devoted to natural convection in enclosed spaces in which a single con- 
vective cell often appears. Explanations of single-cell convection phenomena, 
apart from their own intrinsic interest, are important in that they may add to 
our understanding of multi-cellular motions observed in extended media. The 
present investigation is concerned with laminar, two-dimensional steady flows 
inside a horizontal pipe of circular cross-section whose wall is maintained at 
the sinusoidally-distributed temperature, T,,,, = T,+ A T  cos (6’ + $); see figure 1.  
This family of thermal boundary conditions includes several problems of interest 
depending on the phase angle, 4. With the gravitational field directed as shown, a 
motionless equilibrium state can exist onlywhen 4 = It in. The configuration with 
$ = in, a fluid heated from below, can be unstable because the density gradient 
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is positive upward. The phenomena for all other q5 (of which q5 = 0 and Q = $71 

are qualitatively representative) are alike in that motion ensues for all AT. 
A multi-cellular phenomenon related to our Q = 471 case was discussed in the 

literature as early as 1900 when BBnard noted that a fluid contained between two 
infinite horizontal plates would break up into small convective cells if the lower 
plane were a t  a temperature sufficiently higher than the upper one. B6nard 
reasoned that the viscous forces present at the boundary planes would prevent 

Y 

1" I 
FIGURE 1.  Configuration for general problem. 

the onset of motion unless the density gradient was steep enough. Lord Rayleigh 
(1916) showed that this phenomenon is associated with a critical value of the 
dimensionless Rayleigh number, h = (/3gc,pi/,uk)(rg AT);  here ,LL is the viscosity, 
Ic the thermal conductivity, cp the specific heat, /3 the coefficient of thermal ex- 
pansion and po the density of the fluid; ro and AT are one-half the distance and 
one-half the temperature difference, respectively, between the upper and lower 
planes. Pellew & Southwell (1940) in their comprehensive linear treatment of the 
classical Rayleigh stability problem show that A,, = 106.7. Linear analyses are 
incapable of predicting the motion a t  A > A,, for the multi-cellular configuration. 
Non-linear analyses, such as that of Segel & Stuart (1962), have not yet deter- 
mined the manner in which the steady state is established or the detailed nature 
of the final steady motion in the individual cells. Segel & Stuart do give evidence 
which predicts that the steady-state pattern is, most probably, either an array 
of long, two-dimensional rectangular roll cells or three-dimensional cells with 
vertical cell walls whose horizontal cross-sections are regular hexagons. 

When convection cells do not have an equilibrium configuration the dependent, 
variables in the governing equations are continuous functions of h and can be 
expressed as series expansions in this parameter. Both Batchelor (1954) and 
Lewis (1950) have determined the first two terms in such series expansions, the 
former for a single two-dimensional rectangular cell heated from side to side and 
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the latter for the circular cell with q5 = 0. Keeping q5 arbitrary, we extend Lewis’s 
work to include a rotating inner cylinder whose thermal conductivity is the same 
as that of the surrounding fluid. In  all cases the first two terms are shown to be 
an adequate approximation to the full series for roughly h < lo3, a Rayleigh 
number too small for convection to play an important role. With the exception 
of very slow flows in which q5 + Qn, any final steady motion will necessitate a con- 
sideration of convective mechanisms. Convective effects are very important in 
any heat-transfer calculatioii. In  this instance Pillow (1952) and Carrier (1953) 
show with the aid of dimensional analysis, without actually solving the non- 
linear conservation equations, that the average Nusselt number for the heat 
transfer across a convecting cell is proportional to when h is large. One must 
return to the governing equations, however, to evaluate the proportionality 
constant. The present analysis is the first theory to predict a value which is in 
good agreement with experimental observations for this constant. 

For high values of h physical reasoning suggests a cell interior in which dif- 
fusive processes play an insignificant role. One therefore anticipates a boundary- 
layer structure, a core that behaves as an inviscid, non-conducting fluid sur- 
rounded by a thin layer of fluid adjacent to the wall in which the buoyancy, 
convection, viscosity and conduction mechanisms are important. The interesting 
feature of this type of closed-streamline interior flow is that there is no upstream 
location a t  which one can prescribe the vorticity and temperature distribution. 
One has to resort to other means to make such flows determinate. Batchelor 
(1956) does this for steady incompressible flows by establishing an integral 
condition governing the vorticity of the interior flow in a simply connected 
closed region. Specializing to the two-dimensional case, he shows that the vor- 
ticity is necessarily a constant for the region contained within the closed stream- 
line a t  the edge of the boundary layer. Once we have established a similar integral 
condition to show that the temperature is constant in this same region, we can 
apply Batchelor’s result to our case. The value of the core vorticity is determined 
by requiring that the viscous boundary-layer flow also be in steady motion. 
We shall find that an interior with uniform vorticity is not a rigid body core 
motion when q5 = 0. Martini & Churchill (1960) have conducted experiments in 
the high-Rayleigh-number range for an arrangement similar to our q5 = 0 
case. Their observations are discussed and compared with the present theory in 
the concluding section. Solutions for all three cases of interest, q5 = 0, q5 = in,  
and q5 = in,  which cover the entire h spectrum are presented. 

2. The governing equations 
We confine ourselves to motions in which the quadratic and higher-order 

terms in the velocity can be neglected in the energy equation. This is justifiable 
if the enthalpy of a fluid element greatly exceeds its kinetic energy. Consequently, 
we use the governing equations 

!(pu) f- = 0, ax ay 
(2.1) 

(2.2) 
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where p, cp  and k are assumed constant. If the subscript zero denotes conditions 
at  the origin, then the perturbed state (still neglecting quadratic contributions) is 

are the compressibility and thermal expansion coefficients respectively. It is 
fundamental for a liquid that IpoK/To,kIi < I ,  and when the fluid is agas, welimit 
our interest to those situations where 1 (p -po)/pol < I (T - To)/To,l. Thus for either 
a gas or liquid we may write 

given byplp, = l+K(p-p,)-,kI(T-To). K =p;l(ap/ap)T andp  = -p;l(ap/aT), 

PiPo = 1-AT-q).  (2 .5 )  

If p,, p, and Tq describe a motionless equilibrium state in which all velocities 
vanish then ap,lax = 0, ap$y = -psg and VZT, = 0. Only when C$ = $ 7 ~  is 
there a non-trivial solution to these last equations which satisfies our thermal 
boundary condition. The solution for this special case, 

T, = To - AT(y/r,), (2.6) 
represents a fluid with a purely vertical temperature gradient. When q5 + $7, 
we let T, represent a motionless static state at a uniform temperature, To. We 
express the actual pressure, p ,  its the sum of the static pressure, p,, and the incre- 
mental pressure,pi, due to the fluid motion. = (T - To)/AT is a more convenient 
temperature variable than T. Setting y = BAT, we combine the buoyancy and 
pressure terms in (2.3) to obtain 

in which (T,-T,)/AT = - y/r, or 0 depending whether C$ = &r or q5 + in, 
respectively. It is convenient to introduce the dimensionless variables 

U = u/uo, V = v/uo, X = x/ro, Y = y/r, and P = pi/po; 
the subscript zero implies a convenient, reference quantity. r,, the cylinder 
radius, is a characteristic length already prescribed for the problem. Two useful 
scalings are available for each of u, and po ,  the preferred pair depending on the 
method of solution employed. The governing equations are of boundary-layer 
type when h is large if u, = (ygr,)& andp, = ?/spar,. For general Rayleigh number 
phenomena a suitable choice is u, = k/pocztr, and p ,  = k z / p , c ~ r ~ .  Equations 
(2.1), (2.21, (2.3) and (2.4) when expressed in terms of the Prandtl number, 
7 = ,ucp/k, and the Rayleigh number, h = ypppir$ /pE,  become 

av(i+y@)/aX+aV(l+y@)/aI- = 0, (2.8) 

au a u  1 1 zo.+:-a ("+")I ax aI-  i-y@ax ".[($7]I-yo[V 3 a x  ax ay 
o.-+v- = -__ 

(1.9) 
@--(~-T,)/AT 1 aP 

~. - ___ -. av av 
ax- ay 1-y@ i-y@ay u- + v- = [l,7h] 

+[($7]&[B zv+--(-+-)] 3 a y  a ,ax au ay av  , (2.10) 
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and (2.11) 

where the coefficients in the brackets depend on which of the foregoing defini- 
tions of uo and po are used. Equation (2.5) is accurate only when AT/To < 1. 
We therefore consider only those situations for which yQ < 1. Introducing the 
vector description, V = Ui+  Vj, we have 

divV = 0, (2.12) 

(V.  C) V = [l, ,A] (@ - (3 - To)/AT) j - V P +  [(,/A)*, 71 V2V (2.13) 

and v .  vo = [(yh)-4,1] v2o ,  (2.14) 

where the operators in (V. V) V and V2V have their usual invariant vector 
meaning. The wall temperature distribution is prescribed and the velocity 
vanishes a t  the wall. Thus, the boundary conditions are 

U =  t 7 =  0 and @ =  cos(o+$) a t  r =  1. (2.15) 

By virtue of equation (2.12) a stream-function representation is possible for the 
velocity. Thus V = curlYk, in which k is a unit vector directed along the 
cylinder axis. We take the curl of equation (2.13) to eliminate the pressure and 
write the resulting equations in cylindrical-polar co-ordinates. Since 

(Ts-To)/AT = - Y when q5 = 2 ~ 7 ~  and curl Yj = 0, 

this term vanishes when the curl operation is performed. The governing equa- 
tions can now be written 

where V,  = ( l / r )  aYjar9 and 5 = - aY/ar are the radial and tangential velocity 
components. Equations (2.16) and (2.17) together with the boundary conditions, 

aY/ar = aY/ae = 0 and @ = cos (8+ q5) a t  r = 1, 

complete the statement of the problem. 

3. Very slow flows for q5 + 4;. 
We first consider motions in the ' Stokes flow 'r8gime where all perturbations are 

so small that the quadratic terms in the momentum equation are unimportant. 
There is no boundary layer, and momentum transfer, even in the cell interior, 
is not strongly influenced by convection. For a first approximation we express 
the convective contribution in the energy equation by V . VQs. When q5 + in, 
V. VQS = 0, but for $ = &n-, V .  VQS = - V,. We exclude the $ = in- case here 
and consider this special configuration separately in $5.  Equations (2.166) and 
(2.17 6) linearized in the above fashion become 

v2v2yP = h cose----- ( ar sines@) r a0 ( 3 . 1 )  

and vx)  = 0. (3.2) 
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With little extra labour, we can extend the ‘Stokes flow ’ solutions to include a 
rotating solid inner cylinder whose thermal conductivity is the same as that of 
the surrounding fluid. If the dimensionless radius of this solid core is ‘ u ’  and 
rotates with angular velocity w ,  then the appropriate boundary conditions are 

(3.3) 
S; = 0, CD = cos(B+$) a t  r = 1 

and I:= 0, & = w a ,  CD = ucos(8+$) a t  r = a ,  

with the additional requirement that Ti,, V,, CD and P be periodic in 8. 

incremental pressure are 
The resulting solutions for the temperature, velocity components and 

(3.4) 0 = rcos(O+$), 

and P = ~ ~ h r 2 s i n 8 c o s ( 8 + $ ) ,  (3.6) 

respectively. Two results are of interest in the foregoing linearized theory. The 
velocity is of a purely tangential nature, 1: = 0, the streamlines being circles con- 
centric about the origin, and the pressure is unaffected by the rotation of the 
inner cylinder. The former is a consequence of the fact that the driving term on the 
right-hand side of equation (3.1) is independent of 0. If the inner cylinder experi- 
ences a zero net moment i t  will rotate with a constant anguiar velocity. The 
shear stress a t  any point on the cylinder surface is given by 

Since T , ~  is independent of B we can replace the zero torque condition, 

j-;nTruad8 = 0, 

by simply ~,~l, ,~ = 0. From equation (3.5) this last requirement is fulfilled when 

(0 = +&9- 1)2cos$. ( 3 . 7 )  

,4 fluid and a solid core are not interchangeable. The motion in a fluid core is 
given by V,  = &ACOS $ ( r - r 3 ) ,  as is apparent from equation (3.5) if we let 
u -+ 0, and is not a rigid-body rotation. 

4. Low-Rayleigh-number expansions 
As previously mentioned, the existence of motion for all h when $ + &r gives 

credence to the conjecture that with the exception of the special case $ = in, 
0 and Y are smooth functions of h and as such can be developed in power series 
in this parameter. Since the evaluation of more than the first two terms of such 
series is laborious, the usefulness of this method of solution, potentially valid for 
all A ,  is limited to situations in which his sufficiently small for these first two terms 
to be a good approximation for the series summations. Thus, 

I CD = @,+@.,A+ ..., 
Y = Y1h+Y2hZ+ ... ) 
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where we have no prior knowledge as to how quickly these series converge. 
From equations (2.16 b) and (2.17 b), the usual separation in powers of h leads 
to the following set of equations: 

V2Q0 = 0, (4 .2a)  

Qo = 0, 
1 ayP, a aY,a 

ar a8 ae ar 

a sin8 a 
V2V2Y1 = <Do, ( ar r a8 

1 axy1 a a y 1  8 )  ( ar a sin8 a yV2V2YP, + ; -=& a - ~ - V2Y1 = g cos8--- -) Ql. (4.2d) 

1 VW,+; 

( a8 ar 

(4.26) 

(4 .24  

If we consider the problem with the inner cylinder present, the boundary con- 
ditions on the coefficients are 

a t  r = a.) 

w will be of order h if the motion of the inner cylinder is a free convection pheno- 
menon and not a forced rotation. All dependent variables must, of course, 
be continuous at 8 = 0 and 2n. 

The solutions for Qo and Yl are just the Stokes flow solutions obtained in $ 3 ,  
Qo = r cos (0 + Q) and 

Equations (4.2 b) and ( 4 . 2 d )  are reduced to constant-coefficient equations when 
we introduce the independent-variable transformation, = In r .  The solution for 
Ql is 

The solution for Y, is very lengthy in the general case that includes the rotation 
of an inner cylinder and is omitted here; it is shown in detail in the author's 
thesis (Weinbaum 1963). However, with Q still arbitrary, a relatively simple 
expression is available for Y, in the limiting case, a, + 0, namely, 

- cos'sin(20+5f') (llr2-24r4+ 15r6-2r8)+const. (4.6) 
768 (960) 

If the foregoing solutions are to be applied meaningfully to a practical situa- 
tion, we must estimate the maximum value of h for which the first two terms of 
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the series expansions are adequate approximations to the complete summations. 
One crude criterion to provide such a value is to require the ratio of the maximum 
values of the first two terms of the series be roughly unity. Based for simplicity 
on the case where the inner cylinder is absent, this occurs when h < 600 and 
h < 20,000 in the series expansions for @ and Y', respectively, either of which is a 
very small Rayleigh number in most practical applications. This is not to say 
that the series for CD and Y will not converge for values of h exceeding those 
above, but rather that too inany terms are required for the series representation 
in (4.1) to be practicable. I n  summary, the usefulness of this series expansion 
method is confined to problems wherein conduction as opposed to convection is 
the dominant means of energy transfer. 

5. The critical Rayleigh number for the 4 = +r case 
It is known from linear analyses mentioned earlier that the viscous stress 

in the neighbourhood of the boundary prevent the onset of motion in the Ray- 
leigh stability problem unless h > 106-7. For a single circular cell heated from 
below, one intuitively expects a higher critical Rayleigh number than the pre- 
ceeding value for Rayleigh's multi-cellular configuration since the side walls 
are not shearless, as is the case in the problem Rayleigh treated. The perturbation 
velocities accompanying the onset of motion are small. Therefore, we use the 
same approximations discussed in $ 3  for very slow viscous flows when 4 =l= in. 
Here V.V@, = aY/aLX so that instead of (3.1) and (3.2) we now have 

v2v2Ir = h(a@jax) and vz@ - avrlalr = 0. (5.1) 

These last two equations combine to give a sixth-order homogeneous equation 
for Y, V ~ V ~ V ~ Y P  - h(a2vqax2) = 0. (5.2) 

A simple Fourier analysis is not easily applied to the single circular cell since 
the driving term, h(a2Y/aX2), does not have a simple form when expressed in 
cylindrical polar co-ordinates. The variational problem equivalent to equation 
(5.2) and its accompanying boundary conditions is to determine that special 'P, 
satisfying the same boundary conditions, for which the integral 

+ 3 (&) + fig)2 -  fig)^] d x  d I' (5.3) 

is stationary in value. We conjecture that it is possible to represent closely that 
1V 

Y' for which I is stationary by a finite series of terms, say Y ( r ,  0 )  = C A ,  f n ( r ,  0). 

This approximate 'l! must satisfy the boundary conditions, 
n- 1 

aY/ar = avrjae = o a t  r = 1, 

be bounded everywhere, and be single-valued a t  the origin. Provided the velo- 
cities do not vary rapidly anywhere in the cell, a prospect which is unlikely a t  
small Rayleigh numbers since viscous stresses play an important role every- 
where and would damp out any rapid fluctuations, a polynomial of small degree in 
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n and independent of 8 should be an adequate first approximation for Y. As a 
first guess we try 

(5.4) 
which obeys all the requirements specified in the penultimate sentence. 

Substituting this approximation for Y in (5.3) and performing the double 
integration we find 1 = 48nA2,(1 -h/576); if I is to be a minimum, al/aA1 = 0, 
and A,, = 576. An apparent refinement on the present solution that gives 
credence to  the accuracy of the result just obtained for A,, is to take account of 
the angular dependence in the representation of Y. An improved approximation 
for the stream function which fulfils all the forementioned conditions is 

Y = A,(r2--&r4) = Al[X2+ 1 ’ 2 - i ( X 2 +  I’2)2], 

Y = A,r2 (1 -~r2)+A2r2(1 - r )2s in28+A,r2 (1 - r )2cos20 .  (5 .5)  

The same procedure now leads to a third-order determiiiantal equation for h 
whose smallest positive root has the value h = 576.62. I n  view of the close 
agreement of this last value with that of the first result, there is good reason 
to believe that further refinements would not yield values for A,, very different 
fi-om those already obtained. Thus, the critical Rayleigh number for the single 
circular cell is roughly five times the value for Rayleigh’s multicellular con- 
figuration. 

6. The high-Rayleigh-number interior motion 
It is well known that the thickness of the region of thermal influence adjacent 

to a solid boundary decreases as the Rayleigh number increases in laminar 
free-convection phenomena. For large A, the thickness of this thermal layer is 
small compared to the radius of the convection cell, and in the limit, h -> m, 
such a layer becomes a singular surface. I n  the interior region, where the relative 
importance of diffusive processes is slight, the flow essentially obeys the inviscid 
fluid equations which in the steady state require the temperature to be constant 
along a streamline and similarly the vorticity if the streamlines lie entirely 
within a constant temperature region. Non-conducting, frictionless flows 
outside a boundary layer are usually made unique by imposing boundary con- 
ditions that specify the temperature and vorticity distribution at infinity ; 
however, no such boundary conditions are available for cavity flows with closed 
streamlines. Therefore, we must first establish the necessary conditions which 
make the interior flow determinate, then obtain interior solutions satisfying 
these conditions, and lastly determine the lower limit on h for which the assumed 
boundary-layer structure exists. The first two points we consider here; the third 
we answer in 8 10. 

As h+oo the most highly differentiated terms in equations ( 3 . 1 6 ~ ~ )  and (2.17a) 
become negligible everywhere except in the immediate vicinity of the boundary 
where their presence is essential if the boundary conditions at r = 1 are to 
be satisfied. The interior flow conforms to the so-called ‘ core equations ’, 

27 
(6.1) 

Fluid Moch. 18 
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in which w = - V V '  is the vorticity. Pillow (1952) showed that 

Q, = F ( Y )  and w = - YF ' (U)+G(Y)  (6.2) 

are general solutions to (6.1), where F and G are arbitrary. Temperature gradi- 
ents, in general, generate vorticity whether or not diffusive mechanisms are 
present. Batchelor (1956) has shown for steady, incompressible flows that the 
contribution from viscous forces to the rate of change of circulation around 
any closed streamline lying entirely within the core region is identically zero no 
matter how small the viscosity may be. Mathematically stated, 

V x w . d s  = 0 if =t= 0. P (6.3) 

For two-dimensional closed-streamline flows this condition can be combined with 
(6.2), if F ' ( Y )  = 0 and Q, = const., to show that the vorticity is uniform in a 
simply connected region with small but non-zero, viscous forces. 

Consider a volume, V ,  whose surface, A,  is fixed in space. An energy balance 
applied to this volume requires that 

+J pg.Vdr-J kVT.ndA, (6.4) 
r- d 

where the symbols have their usual meaning and n is a unit outward normal 
vector. If the flow is steady, the integral on the left-hand side of equation (6.4) 
vanishes. The first two integrals on the right-hand side likewise vanish if we 
choose A to coincide with a stream surface, since V . n  = 0 at such a surface. 
I n  general, energy changes taking place in a fluid element due to the action of 
buoyancy and viscous forces are higher-order effects in free convection problems. 
Therefore, the integral condition, 

n 

J V T . n d A = O ,  
A 

(6.5) 

must be satisfied on every closed stream surface since k + 0, although it may be 
arbitrarily small. We consider now the two-dimensional flow in a region where 
each ,B and k are small, hence the solutions in (6 .2)  valid. VT and n are every- 
where parallel if A lies entirely within a region where diffusive processes are 
unimportant. Since d Y / q  is the displacement corresponding to an increment 
d Y  in Y,  condition (6.5) can be written as 

qdA = 0. 

Unless the integral vanishes, in which event q is identically zero, dTjdY = 0. 
Thus, the temperature distribution is uniform in the interior and, consequently, 
the vorticity distribution too. It appears that two-dimensional, closed-stream- 
line flow a t  high h cannot be steady until the persistent effect of diffusive pro- 
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cesses has eventually evened out any variation of temperature and vorticity 
that may have been present initially in the interior. 

The equations governing the flow, (2.16) and (2.17), and the boundary con- 
ditions require that @ change sign on reflexion about the origin whereas w and 
Y are centro-symmetric. As a result, Q, = 0 in the core. wo, the value of the 
vorticity in the interior, is determined by requiring the boundary-layer flow 
also to be in steady motion. This occurs when the buoyancy couple present in the 
boundary layer just balances the resisting torque exerted on the fluid by the wall. 
Both moments must cancel if the core is to rotate with a constant angular 
velocity. An interesting special case occurs when the core motion ceases, and 
wo = 0. This curious phenomenon does happen for our 4 = 0 configuration. In  
the general case the core stream function, Yo, satisfies Poisson's equation 
V2Yo = wo, whose general periodic solution for a circular geometry is given by 

the Am are constants whose exact values are determined by matching the solu- 
tions for the core and boundary-layer flows. 

7. An approximate solution of the boundary-layer equations for the 
4 = 477 case 

Neither the interior solution for the temperature distribution nor the stream 
function satisfy the boundary conditions a t  r = 1. In accordance with usual 
boundary-layer theory, we anticipate that when h is large the solutions for Q, 

and Yr have the form 

0 = Q0 + Q1 (Q0 = 0) and Y = Yo - caYr1  (a < 0 ) ,  (7.1) 
where E = (qh)-* and a is an unspecified negative constant whose exact value is 
determined by requiring that all mechanisms, buoyancy, viscosity, conduction, 
and convection, be important in the boundary-layer region. Since aY/aO = 0 a t  
the wall, i3Yr0/a6' = ca(aYl/aO) at r = 1. aYl/af3 is of order unity for conditions 
are changing rapidly only in the direction perpendicular to the boundary. Thus 
iiYo/aO is of order ca, and the coefficients, A,, in equation (6.7) must also be of 
this order. Unless wo is of order 6-a or smaller, the interior flow is basically a solid 
core rotation, and the velocity a t  the edge of the boundary layer is closely approxi- 
mated by V = &w00, if the boundary-layer thickness, 6, is < 1. 

I n  view of the preceding discussion, equations ( 2 . 1 6 ~ ~ )  and (2 .17a)  have the 
asymptotic form 

and 

(7.2) 

( 7 . 3 )  

for the flow at the edge of the boundary layer. These equations are a classical 
Oseen linearization of the equations describing the boundary-layer flow. In  
cases where the free-stream velocity is not influenced by processes taking place 

27-2 
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in the boundary layer, such as the steady flow past a semi-infinite flat plate, the 
solution of the classical Oseen equations will describe correctly the far-field 
behaviour a t  the edge of the boundary layer. This same solution will not con- 
tinue to be the correct value in the slow flow region just adjacent to the wall 
since the equations are integrated through an intermediate region in which this 
simple linearization overestimates the convective contribution. In  dealing with 
closed-streamline flows, one needs a more subtle Oseen-type linearization, for 
the interior behaviour does depend on the boundary-layer flow with the result 
that the classical Oseen solution provides a poor description everywhere. An 
improvement on the classical Oseen theory which eliminates some of the fore- 
going contradiction and corroborates better with experimentally measured heat- 
transfer rates is based on Carrier's (1953) hypothesis that it is a closer adherence 
to physical reality if, instead of using zero as in the Stokes theory or Quo as in 
the Oseen method, we choose for the linearizing velocity a constant, c ,  falling 
somewhere between these two limits whose exact value is determined after- 
wards by a judicious averaging process consistent with proper overall momentum 
or energy transport. There is still no assurance that a solution which exhibits the 
right behaviour in the near field will continue to the correct behaviour in the far 
field, or vice versa; however, we hope a wise averaging procedure for these 
convective terms will reduce to a minimum the differences between the exact 
and linearized solutions. 

The boundary-layer terms, CDl and Yl, will be smooth functions of their argu- 
ments if we stretch the co-ordinate perpendicular to the boundary; the co- 
ordinate parallel to its length need not be scaled. Such a co-ordinate stretching is 

[ = ( l - Y ) € U  (a  < O ) ,  (7.4) 

where, if we identify the a above with the a used in (7.1), aCD,/a[ and aY,/a[ are of 
order unity. Subsequently, we shall refer to the governing equations when 
+w0 is used for the linearizing velocity as the Oseen formulation and when c 
is used as the 'modified Oseen ' formulation. In the scaled co-ordinate system 
we have, to order eu, 

7€1+2u a 4 ~  1 l a p  - (two, c )  asyl/a[2ae = cos e a a q a g  (7.5) 

and c 1 + 2 w ~ l p p  - ( J ~ ~ ,  G )  aagae = o, (7 .6)  

where a = - 4 if all terms play a significant role. Similarly, our boundary con- 
ditions become when we specialize to $ = 

at [ = O  and CD,=Y,=O at [=a. ( 7 . 7 )  

Equations (7 .5 )  and (7 .6 )  with boundary conditions (7 .7 )  are expediently 
solved in polar complex-variable notation using a standard separation-of- 
variables procedure. For the classical Oseen case the real parts of these solu- 
tions are 

CD = -exp((r-l)(Qh):}sin[B+(r-l)(Qh)t] (7.8) 
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1 and 'I" = -J-(-) 2 r2 [ l + ( ~ ) ' ~ c o s ( 2 8 + & r )  
7 4  h '7-3 

thus, the core vorticity adjusts to the value wo = ( 2 / p ) i  when the boundary- 
layer flow is in steady motion. The corresponding solutions based on the 'modi- 
fied Oseen ' linearization are 

@ = -exp{~c(r-l)('7n)f)sin[e+(&c):(r- l ) ( q ~ ) t ]  (7.10)  
and 

(i.11) 

where c is still to be determined. This improved solution shows that the core 
rotates with a constant angular velocity, hence experiences a zero net torque, 
when q, = l/yc. 

There are several physically meaningful averaging processes for determining 
the constant c .  The obvious possibility, demanding that the difference between 
the linearized convective terms in equations (7 .5)  or (7 .6)  and their non-linearized 
counterparts vanish when averaged over all (t, 8)-space, fails in the present case. 
Due to the opposing periodicity properties of and Y the c-dependence cancels 
out when the 8 integration is performed. A lengthier, but probably more accu- 
rate scheme is to substitute our approximate solutions in the non-linear equa- 
tions governing the boundary-layer flow and require that their integrated 
average over all (c,  8)-space be zero. However, the 8-integration again leads to 
the same difficulty. We, therefore, weight the exact equations with a function 
of 8 that picks out the angular behaviour of the solutions. Cos8 is appropriate 
for the thermal equation since 0 is anti-symmetric, whereas cos 28 is suitable 
for the momentum equation since Y is centro-symmetric. Either evaluation is 
laborious, and the values for c obtained from each should not differ by much. 
We choose the averaging procedure which uses the thermal equation, that is 
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since it is by far the shorter of the two. Both the 0 and 5 integrations can be 
performed analytically. The result is a quadratic equation for c whose physically 
possible root is 

(7 .13)  

Thus the  vorticity in the cell interior adjusts in the steady state to the value 

10.0 

8.0 

6.0 

WO 

4.0 

2.0 

0 I I I I I I I I I  

2 4 6  8 I'o- 
7 

(7 .14)  

FIGURE 2.  Core vorticity as a function of Prnndtl number, 6, = in and h large. 

Equation (7.14) and the classical Oseen result, wo = (2/7)4, are plotted in 
figure 2. For most gases, Prandtl numbers fall within the range 0.6 < 7 < 0.8 and 
for most liquids 0.9 < 7 < 7.0. These limits include a wide range of temperatures 
and pressures. In general, the 'modified Oseen ' theory predicts core velocities 
which are at  least a factor of two greater than the corresponding classical Oseen 
result. Since t = ro/uo = (ro/PgAT)* is the characteristic time of the problem, 
the actual vorticity, woD, can be written won = wo(&AT/ro)*. Whereas the Ray- 
leigh number is the significant parameter in determining the boundary-layer 
thickness, the Prandtl number is the governing parameter in determining the 
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angular velocity of the core. Based on the ‘c/r’ solution presented in $ 8, solutions 
for the maximum velocity derived from equation (7.11) are accurate to within 
10% for y h  > 5 x 104. Temperature and velocity profiles are discussed in $ 10. 

Perhaps the best illustration of the power of the ‘modified Oseen’ technique 
in the present problem is the reasonable agreement its results exhibit when 
compared with empirically measured heat-transfer rates. The average Nusselt 
number, N ,  for the heat transfer across the upper half of the cell wall is given by 

(7.15) 

Experimentally, Schmidt & Saunders (1937) found that the heat transfer across 
two horizontal plates is represented by N = 0-23h4. Our solutions for @, equa- 
tions (7.8) and (7.10), predict N = 0-351h) and N = 0.236h2 for the classical 
Oseen and ‘modified Oseen’ analyses, respectively. These results are for a unit 
Prandtl number. 

8. The ‘c/r’ solution 
The linearized Oseen boundary-layer method just shown for the $ = in 

case fails when $ = 0, for a rigid-core rotation is not compatible with any steady 
boundary-layer flow. We seek a simplifying reformulation of equations (2.16) 
and (2.17) which requires no further information about the cell interior other 
than that core temperature and vorticity are uniform. The non-linear terms, 
V .  V@ and V.  Vo, which are the major source of mathematical difficulty, are 
essentially zero in the core when h is large since @ and o are each constant in 
this region. At the other end of the A-spectrum, the slow-flow rkgime, convective 
mechanisms are unimportant everywhere within the cell because all velocities 
are very small. The absence of a radial velocity component in the Stokes-flow 
solution and the intuitive notion of a continuous velocity boundary layer 
with a uni-directional motion (no stagnation point) in the high-h limit together 
suggest a flow which is basically @directed everywhere for all A. Thus, for a 
first approximation, we neglect the &dependence and introduce the linearizing 
velocity, V = c (h ) f ( r )  9. Provided f(r) does not vary appreciably from unity 
in the vicinity of the wall, the constant, c(h) ,  is of much the same character as 
the ‘modified Oseen’ constant introduced in $ 7 ;  its value can be determined 
afterwards in the usual fashion. The foregoing arguments give us a great deal of 
freedom in the selection off(r), since it is apparent that the r dependence is of 
little importance in the cell interior in either the high- or low-h limit, provided 
f ( r )  is nowhere too highly singular. I n  the intermediate-h range we hope wise 
averaging procedures for the constant, c(h), will keep departures from the non- 
linearized solutions to a minimum. 

One then wishes to choose anf(r) which facilitates the mathematical analysis. 
One choice is f ( r )  = l /r,  since our solutions take the simple form Qi = rm* X(8) 
and Yi = rntY(0). Equations (2.166) and (2.176), whenlinearized in thismanner, 
become 

(8.1) 

and (8.3) 
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where the accompanying boundary conditions are given in (2.15). The r-l 
behaviour will not lead to a divergence a t  the origin in the momentum equation 
provided each of the terms in (8.1) is either harmonic, represents a rigid-body 
rotation, or has its r dependence vanish a t  least as quickly as r4 in the limit 
r --f 0. One can proceed with the solution and verify that these conditions are 
satisfied afterwards. Similarly, for the energy equation each of the terms in (8.2) 
vanishes at the origin provided at behaves as r n ,  where n 2 2. We shall find, 
when h is sufficiently small, that the solution for at does pass through values for 
which 1 < n < 2. However, if c is small compared to unity when this occurs, 
both terms in (8.2) are small everywhere in the domain of the problem except 
in the immediate neighbourhood of the origin; any errors should then be localized 
about this singular point for c < 1.0. 

Equation (8.2) has the general solution 
m 

(8.3) 

where n, = m( 1 + ic/m)S and m is integral since CD must be periodic in 8. The 
solution is bounded a t  the origin if n, is defined by its root in the second 
quadrant. The thermal boundary condition, = cos (0 + q5) at r = 1, is satisfied 
if all the a, = 0 except when m = 1, in which case a, = a+iP, where a = cosq5 
and ,8 = sin q5. The temperature distribution is therefore described by the real 

(8.4) 
part of CD = (a+ip)rl l ieio 

and is valid for all q5. It is convenient to write n1 as 

121 = A + i B  = ( 1 + ~ 2 ) t e x p ( ~ ~ t a i i - l c ) ;  (X .5 )  

A and B are moiiotoiiically increasing functions of c .  When c < 6.928, A < 3, 
and the convective term in (8.2) indicates a physically non-realizable contribu- 
tion at r = 0. I n  the next section we present an approximate variational solution, 
valid in the low-h range corresponding to A < 2,  which does have the proper 
behaviour a t  the origin. The solution for a, (8.3), is now substituted in equation 
(8.1). A separatioii-of-variables method can be used if one breaks the solution of 
the momentum equation into two successive steps, the first of which assumes 
that V2Y is treated as the unknown. The mathematics is expedited by the inde- 
pendent-variable transformation, 6 = lnr. Retaining only those modes in the 
general solution for Y that are the same as those introduced by the forcing terms, 

(8.6) 
me find 

where a, b and f are arbitrary complex constants, and d and g are the constant 
coefficients belonging to the particular solution, namely, 

‘€‘/A = ~ e 2 l +  be2l+2iO +de(”1+3):+2f(l +f&+2):+21* +ge(n1+3)C, 

d = P/(Z,+iZ,) and g = ,S / (Y1+iY2) ,  ( 8 . 7 )  
where 

38 = CY(A + 1) -@B+i[P(A + 1) +aB], 3P = a(A - 1) -,8B+i[P(A - 1) i-~xB], 
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q = 2( 1 + ic/2q)t  and is defined by its root in the second quadrant; thus 

q = D + iE = 2( 1 + c2/472)1 exp { i i  tan-I (c/2q)}.  (8.8) 

D and E are monotonically increasing functions of c; D = 2 and E = 0 a t  c = 0, 
their minimum values. Hence each of the terms in equation (8.1) satisfies the 
necessary criteria for boundedness established in the paragraph following (8.2). 
The general solution for Y, (8.6), will satisfy the boundary conditions a t  6 = 0 
if 

and (8.9) 

the subscripts r and i distinguish the real and imaginary parts of the complex 
constants in (8.6). 

The expressions for the temperature distribution and stream function are 
the real parts of the complex solutions for @ and Y ,  equations (8.4) and (8.6) 
respectively: 

@ = rA[cos(BInr+8+$)], 

‘ Y / h  = u,r2 + r2(b, cos 38 - bi sin 28) + rD+z[rfr cos ( E  In r + 28) - fi sin ( E  In r + 20)] 

(8.10) 

+ ~ ~ + - ~ [ g ,  cos Bln r - gi sin B In r + d, cos (B  In r + 30) - di sin (B  In r + 30)]. 

We shall evaluate the constant c later when we consider the evaluation of a 
similar constant in the ‘ C T ’  solution. 

One can readily verify that (8.10) and (8.11) reduce to the Stokes flow solu- 
tions, @ = rcos (8+q5) and Y = & h c o s ~  (&r4-r2), in the limit c -+ 0, provided 
r + 0. When c+ co, the ‘ c / r  ’ solutions are related to the boundary-layer solutions, 
(7.8) and (7.9). Comparison of the two solutions establishes the relationship 
between the constants introduced for the linearizing velocity in each. The 
subscripts M and B will refer to the ‘c / r ’  and the boundary-layer solutions, in 
that order. Since r a  = exp (a In r ) ,  and In r = (r  - 1) - t ( r  - 1)2 + . . . , ra E ea(,-l) 

w-heno! 8 1. Equations (8.1O)and(8.11) can, therefore, bewritten when q5 = i n a s  

(8.11) 

a,, = - exp { ( & ~ ~ , ~ ) 4  (r - I)> sin [(+cLll)g (r  - 1) + 81 (8.12) 

in the limit c , , ~  + a. These last expressions are identical to the singular perturba- 
tion solutions, (7.8) and (7.9), if 

calI = (yh)*c,  and ‘FAlr = (qh)hY,. (8.14) 



426 Sheldon Weinbaum 

9. The ‘cry solution 
The ‘ c/r ’ linearization is probably the only Oseen-type linearization possessing 

a relatively simple exact solution. We have seen, however, that this solution 
gives rise to a spurious convective contribution at the origin in equation (8.2) 
when cLIl < 6.928. For cnl 6 1.0 this error is confined to the immediate neigh- 
bourhood of the origin since a t  points removed from this singular point one is, 
for all practical purposes, considering the equation V2@ = 0. Therefore, we seek 
another approximate method of solution valid only for the small range of h in 
which the ‘c/r’  solution is inaccurate. This solution will be of particular value 
for the flow near A, when $ = in. A variational method of solution is well suited 
for this region of interest, since h is small and polynomial representations of 
low degree should be satisfactory approximations for both 0 and Y.t V = cre 
is the only linearizing velocity of the type V = cf ( r )  9 that permits the resulting 
fluid dynamic equations to be cast by standard methods in equivalent varia- 
tional form. The physical basis for this linearizing velocity, which is properly 
behaved a t  the origin, is fundamentally the same as for the ‘modified Oseen’ 
linearization already discussed. Again we hope to minimize the differences 
between the linearized and exact solutions by choosing the constant, c,  such that 
the overall momentum and energy transfer are correct. The appropriate linearized 
equations are 

(9.1) 

and v2~-c(aa/ae) = 0. (9.2) 

The solution to (8.2) which satisfies the thermal boundary condition, 
0 = cos (01-4) a t  r = 1, is of the form CD = f(r)ef@+#); f ( r ) ,  a complex function, 
satisfies 

1 1 f “+ ,f f - (-+ +zc . ) f = 0, (9.3) 

with f ( 0 )  = 0 and f(1) = 1 as boundary conditions. The forcing term on the right- 
hand side of (9.1) will, therefore, generate a solution for the stream function which 
has the form ‘F/A = g(r )  + h(r)  eZis; g ( r )  satisfies 

(9.4) 

subject to the boundary conditions g’ (0)  = g’(1) = 0. In addition, both g and 
V2g are bounded a t  the origin since there can be neither an accumulation of 
fluid nor source of vorticity a t  this point. Similarly, for h(r), 

where h(0)  = h’(0) = h(1)  = h’(1) = 0. Equation (9.3) permits an exact solution 
in terms of Hankel functions of imaginary argument. However, with a view to 

t The author is indebted to G. F. Carrier for this suggestion. 
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obtaining approximate solutions to  (9.4) and (9.5), it is more convenient to seek 
a n  approximate solution for f ( r )  that is a polynomial in r whose coefficients are 
determined using a variational scheme. 

Thus, instead of (9.3) and (9.5), we wish to determine those f ( r )  and g(r )  for 
which the integrals 

(9.6) 

1 and J = 1; [ -$yrhrf2+ dr (9.7) 

are stationary in value. Truncated series approximations for f ( r )  and h(r)  which 
satisfy the boundary conditions and adequately describe the low-h behaviour are 

f ( r )  = r + A,(r  - r 2 )  + A2(r - r4) + A,(r - r6) (9.8) 

and h(r) = r2(1-r )2(B1+B2r2+B3r4) ,  (9.9) 

respectively. The higher powers of r should pick out some of the features charac- 
teristic of the transition to the high-h behaviour, although a series representa- 
tion suitable for the entire h spectrum would require many more terms than are 
used here. I and J are minimized and the approximations for f ( r )  and h(r)  
optimized if aI/aAi = 0 and aJ/aB, = 0, i = 1, 8,  3. Once the integrals, (9.6) 
and (9.7), are evaluated these last conditions provide two sets of linear algebraic 
equations to determine the A’s and B’s. Equation (9.4) is an Euler differential 
equation and can be solved exactly. Denoting the real and imaginary parts of the 
coefficients by bhe subscripts r and i, respectively, and extracting the real parts of 
the solutions for @ and Yr, we obtain 

= [r  + (Alr  + A ,  + A3,) - Al,r2 - Ae7r4 - A,r6] cos (8 + q5) 
- [ (Al i  + A 2i + A,,) r - A,, r2 - A2ir4 - A,, r6]  sin (8 + q5) (9.10) 

and 

Y / h  = Dl,r2+D2rr4+D3Tr5+D4Tr7+D5rr9+r2(1 -r)2(B1,+B2,r2+ B3,r4) cos3t) 
- r2( 1 - r)2 (Bli + B2ir2+ B3ir4) sin 28, (9.11) 

where the D’s are the constant coefficients arising in the solution for g(r) .  The 
temperature and velocity profiles which result are discussed in the next section. 

The physical reasoning behind the selection of a suitable averaging criterion 
to determine the constant, c, in the ‘c/r’ and ‘cr’ solutions is basically the same 
as outlined in 0 7, where we had to perform a similar procedure for the evaluation 
of the ‘modified Oseen ’ constant. The only difference is that in the latter calcula- 
tion we could average the equations over a region confined to the boundary 
layer, whereas in the present case the domain of integration includes the entire 
cell. The momentum and energy equations are coupled; therefore, the c vs h 
relationship derived from one should not differ appreciably from the other. The 
simpler form of the energy equation will make its use the more convenient 
choice, other factors being equal. Because of the opposing symmetry properties 
of @ and Y it is again necessary to weight equation (2.17) by a function of 8 
before the B integration is performed. When 4 = and h is small we want the 
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weighting function to pick out not the actual temperature distribution, but the 
departure of our solution for @ from the equilibrium solution, since it is just the 
differences between the two solutions which create the flow. Therefore, wanting 
to weight convective effects we multiply equation (2.17b) by cos 0. When # = 0, 

$h = 450, x = 450 

+=goo, x=oo 
$h=OO, x=oo*, 

I I I I I I I I I 1 
4 6 8 10 12 

log h 

FIGURE 3. c 1’s h curves for ‘c/r’ solution, 7 = 1. 

h 

FIGURE 4. c 2‘s h curves for ‘cI.’ solution, 7 = 1. 

or # = in, and there is no motionless state, we wish to emphasize the actual wall- 
temperature distribution. Hence cos 0 and cos (0 + in) are the appropriate 
weighting functions, in that order. Our criterion for determining c is then 

where the phase angle, x, depends on which of the three cases is being considered. 
For both the (c/r’  and ( c r y  solutions the r- and 0-integrations in (9.12) can be 

performed analytically. The resulting solutions with 7 = 1 where obtained by 
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programming an IBM 7090 computer for our three situations of interest: Q = 0, 
x = 0; q5 = in, x = in; Q = &, x = 0. The c vsh curves obtained are shown in 
figures 3 and 4. Figure 3 provides a means of estimating the range of validity of 
boundary-layer solutions presented in $7.  I f  equation (7.13) is used in conjunc- 
tion with (8.14) we obtain the dashed line shown in the figure. Departures in c 
from the results of the ‘ c / r  ’ solution are confined to less than 10% for h > 5 x lo4. 
We see from figure 4 that when q5 = 0 or &r all velocities become vanishingly small 
as h --f 0, whereas for Q = 9, all motion ceases as h -+ 593. This value is within a 
few per cent of the value for A,, which our linear stability theory predicted in 5 5 .  

10. Results 
The ‘ c / r ’  and ‘cr’  solutions for the temperature distribution and velocity 

components were obtained by progra,mming an IBM 7090 computer for repre- 
sentative values of c covering the entire h spectrum for Q = 0, in, and 471. These 

c 

0.1 
1.0 

10 
10% 
103 
1 0 4  
6.928 

$ 5 = 0  

1.908 x 103 

2.317 x 10’ 
1.994 x lo2 

7.832 x lo4 
6.240 x lo6 
5.890 x 10s 
1.19 x 1 0 8  

~ 

A 
$6 = *. $5 = +7T 

3.181 x lo1 - 
2.226 x lo2 - 
1-402 x lo3 
4.233 x lo4 

2.677 x lo3 
1.236 x lo6 

2.880 x los 1.191 x 107 
2.558 x lo8 1.257 x 109 
9.36 x lo2 1.70 x 103 

TABLE 1. Representative valiies of c and A ,  ‘ c / r ’  solution. 

h 
c $ 5 = 0  $6 = 477 $6 = *7T 

0.1 2-814 x loo 3-951 x loo 5-932 x lo2 
1.0 2.829 x lo1 3.732 x lo1 5.986 x lo2 

10 4.372 x lo2 3.569 x lo2 1.037 x lo3 
20 1.923 x lo3 1.094 x lo3 2.870 x lo3 

100 1.003 x lo5 3.355 x 104 5.567 x LO4 
60 2.076 x lo4 7.787 x lo3 1.801 x 104 

TABLE 2. Representative values of‘ c and A,  ‘ C T ’  solution. 

results and their region of overlap with the Stokes flow and singular perturbation 
solutions are presented and interpreted in this section and compared with 
experimental observations whenever possible. Having already determined the 
cell behaviour as a function of 7 for those situations where it is physically inter- 
esting, namely the high-h limit of the 4 = in case, we limit the present discus- 
sion to 7 = 1, a convenient representative value. When Q = 0 the Prandtl 
number has little influence on the interior motion in the high-h limit since, as 
we shall see shortly, wo --f 0 as h --f co for all 7. 

The solutions for the temperature and velocity profiles were obtained for 
c = 0.1, 1-0, 10, 102, lo3, and 104 for the ‘ c / r ’  solution and for c = 0, 1, 1.0, 10,20, 
50, and 100 for the ‘cr’ solution. The corresponding values of h are given for 
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easy reference in tables 1 and 2 .  Table 1 includes the values of h for which 
c = 6.321, the point at which the ‘GIT’ solution diverges at the origin. 

Figures 5 and 6, plots of equations (8.10) and (9.10), respectively, show 
temperat>ure profiles for various values of c a t  the angular position for which the 

1 -0 

0.8 

0.6 

@ 0.4 

0.2 

0 

If 4 = 0, theno= 0 
If #=in. then 8=an 
If #=in, then 8=2n 

- 0.2 L 0.2 0.4 0.6 0.8 1 -0 
r 

FIGURE 5. Temperature profiles at position of maximum wall temperet,urc 
for ‘+’ solution. 

1 -0 

0-8 
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0.2 

0 

If #=O, then 8 = O  
If # =in, thenO=in 
If #=;a, then 8 = I n  F t c = 0.1 + A d  

-0.2 L 0-2 0.4 0.6 0-8 1 *o 
r 

FIGURE 6. Temperature profiles at position of maximum wall temperature for ‘ c r ’  solution. 

wall temperature is maximum. The same curves apply t o  all three cases of interest 
if we adjust properly for phase differences. This does not imply that for a given h 
all three cases have geometrically similar temperature distributions; the c vs h 
curves differ, of course, for each. The dominant characteristic one notices is 
the formation of a constant temperature interior and thermal boundary layer 
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as h increases. A secondary feature is the tendency of the temperature profiles 
to overshoot the @ = 0 value at the edge of the core region. This is a convective 
response to a primary convective effect which displaces hot and cold fluid elements 
by 90 degrees. The dashed curve in figure 5 was obtained from the experimental 
data of Martini & Churchill (1960). Their thermal boundary condition (left- and 
right-hand halves of their cylinder are maintained a t  constant but different 
temperatures) differs in detail but is qualitatively similar to our q5 = 0 case. 
Based on figure 3, c TZ 250 for the Rayleigh number a t  which they conducted 
their test. 

0.3 

0.2 

a) 

0.1 

0 

If + = 0, then 8= n 
If +=in, then8=in 
If # =in, thenB=O 

K c =  104 

0.2 0.4 0.6 0.8 1 -0 
r 

FIGURE 7 .  Temperature profiles 90 deg counterclockwise from position of 
maximum wall temperature for ‘ c / r ’  solution. 

Proceeding 90 deg counter clockwise from the position of maximum wall 
temperature, we obtain the temperature profiles shown in figure 7. The 
convective motion carries the hot fluid from the heated side through a quarter 
of a circle creating a region of relatively warm fluid at the 0 position where 
@ = 0 at the wall. Since @(r,  0) = - @(r,  /3+ T ) ,  a similar region of comparatively 
cool fluid forms diametrically opposite the position for which the curves of 
figure 7 apply. As h increases these hot and cold regions move radially outward 
increasing the effective torque on the interior portion of the cell due to the 
increased lever arms about the origin of these hot and cold regions. For all q5 
other than q5 = 0 this couple acting at  the edge of the interior region causes the 
core to rotate as a solid body, the net moment being greatest when $ = in. 
When q5 = 0 the heated and cooled fluid elements rest a t  the top and bottom of 
the cell, respectively, in a stabilizing manner. The component of the buoyancy 
couple which produces the core rotation when q5 + 0 now vanishes, and instead 
one finds a stabilizing torque that resists such a rotation and which, we shall see, 
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virtually arrests the interior motion when h is sufficiently large. Figure 8 provides 
a more detailed description of the thermal boundary-layer structure for a repre- 
sentative high4 situation, c = 103. Successive boundary-layer temperature 
profiles, taken a t  8 stations 22.5 deg apart, display the manner in which a region 
of relatively warm fluid is established adjacent to a wall station where CD = 0. 

If q5=O,curve l i sa t8=0 
If 9 = pr,curve 1 is a t @ = f n  
If # = iz cu:ve, 1 is at 8=:n 

c =  103, dr solution 

- 

- 

- 

- 

- 

1 -0 

0.8 

0.6 

0-4 

0.2 

O @  

0.2 

0.4 

0.6 

0-8 

1 -0 
FIGURE 8. Boundary-layer temperature profiles at  various 0 positions for a representative 
high-h situation. Curve 1 is taken a t  the angular position of maximum wall temperature 
and each succeeding curve is 22.5 deg counterclockwiscl from the previous one. 

Regardless of the choice of q5 or c, the machine-computed results indicate 
that V ,  is a t  most an order of magnitude less than V, everywhere within the domain 
of the cell. The normalized velocity profiles we discuss next, therefore, are based 
on V,. They are obtained from equations (8.11) and (9.11). Figures 9 and 10 
refer to our q5 = 0 arrangement. The normalized velocity profiles when c = 0.1 
in both figures are each very nearly identical to those obtained from the Stokes- 
flow theory. Based on the ‘ c r ’  solution, departures of more than 194 from the 
Stokes-flow velocity profiles are first noticed for h x 50. As deduced from the 
temperature profiles for the q5 = 0 case, one observes, with increasing A, a progres- 
sive stagnation of the core and the creation of a narrow circulating fluid layer 
adjacent to the wall. The core behaves much as if it  were disk weighted a t  its 
bottom. At high values of h the shearing moment exerted on the interior by the 
convecting fluid in the boundary layer is not sufficient to overcome the stabilizing 
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influence of the buoyancy couple acting on the interior region. Velocity profiles 
for the convecting fluid band are shown a t  various 0 positions for a representative 
high-h situation in figure 11. A fluid element in the circulating ring is accelerated 

/@-7-c\ I-- - _ _ - -  Stokes's-flow theory, 
equation (3 .5) .  

I n.6 c =o-1 
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FIGURE 9. Velocity profiles whon q5 = 0 at 0 = 0 from ' c / T '  sohition, ?I = 1. 
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FIGURE 10. Velocity profiles when q5 = 0 at 0 = 0 froin ' c r '  solution, 11 = 1. The curves 
for c = 0.1, 1.0 and the Stokes-flow theory, equation (3.6),  cannot br distinguished using 
the above scale. 

by buoyancy forces in advancing from positions 1 to 5. Conservation of mass 
requirements prevent the boundary layer from thickening along this segment 
of the periphery. I n  passing over the top and proceeding down the cold wall 
t,oward 8 = m, the rotating fluid band experiences a stabilizing density gradient. 
The effect is to both retard the fluid motion in and increase the width of the 
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convecting band. Since Y is centro-symmetric the boundary-layer behaviour 
just described repeats itself when we complete the circuit along the bottom half 
of the cylinder. All the interior and boundary-layer motions which we have 
described have been observed by Martini & Churchill in their experiments. At  
the highest Rayleigh numbers for which they conducted their tests, h z loi ,  

FIGURE 11. Boundary-layer velocity profiles for Q = 0 case a t  0 intervals of 
22.5 deg for a representative high-h situation, ?,I = I .  

all motions were still two-dimensional, with no evidence of either the onset of 
turbulence or the presence of Taylor instabilities. It is apparent from the pre- 
ceding discussion why an Oseen singular-perturbation method of solution, which 
assumes a rotating solid-core behaviour, is unsuccessful for the 4 = 0 case. 
The core vorticity, which is a non-zero constant in the high-h limit, for all q5 
other than 4 = 0, vanishes when 4 = 0. 

The normalized velocity profiles for the 4 = in cases are plotted in figures 13 
and 13. The ‘cr ’  solution provides the more accurate description for the motion 
near the critical Rayleigh number, whereas the ‘ c/r  ’ solution is more reliable for 
h greater than roughly lo4. For the very slow motion near A,, the velocity profiles 
differ from the Stokes-flow profiles for the 4 + in cases in that the position of 
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maximum velocity is shifted toward the origin. As anticipated, a rigid rotating- 
core motion is manifested a t  high values of A. The velocity profiles are slightly 
peaked at the edge of the cell interior due to the thermal overshoot that occurs in 
this region. The overshoot creates a clockwise moment on the interior region 
which must be balanced by an opposing shearing moment if the core is to rotate 
with constant angular velocity and experience a zero net torque. 

0 0.2 0.4 0.6 0-8 1 -0 
r 

FIGURE 12. Velocity profiles when Q = 47r at 19 = +7r from ‘ c / T ’  solution, T/ = 1.  

0.2 0.4 0.6 0.8 1 *o 
r 

FIGTIRE 13. Ve1ocit)y profiles when 4 = 37r at 0 = $7r from ‘ c r ’  solution, ?I = 1. 

Figure 14 shows that the q5 = 4.. case is a hybrid phenomenon whose solution 
contains elements of each of the q5 = 0 and &r solutions. This solution exhibits 
the Stokes-flow behaviour characteristic of the q5 = 0 case when A is small and 
the rigid rotating-core behaviour we find for the q5 = 3.. case when A is large. 
Only the q5 = 1.n case has a motionless equilibrium configuration a t  the low end of 
the A spectrum, and only the q5 = 0 case has a self-stabilizing core for high values 

28-2 
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of A. Thus, the qualitative behaviour of the Q = &m case is representative of all Q 
except the special cases Q = 0 and in. Finally, we need a uniform criterion to 
establish both the region of validity and overlap of the different solutions pre- 

1 *o 

0.2 

0 

0 0.2 0.4 0.6 0-8 1 .o 
r 

FIGURE 14. Velocity profiles when 4 = $T a t  0 = $T from ‘ c / r ’  solution, 7 = 1. 
- __ , Stokes’s flow theory, cquation (3 .5 ) .  

5t 

4 i 

r 

FIGURE 15. (I7,),,, 2‘s h for 4 = 0, &T, and +r. (I’,),,,, as used here refers to the maximum 
value of T’o a t  the angular position of maximum wall temperature. -, Exact ‘c /r’  linear- 
ization ; - -, boundary-layer solution; - - - - , ‘c j r ’  variational method; ---, Stokes’s- 
flow theory; 7 = 1.0. 

sented. Curves of (Jh),ax us A, with q = 1, are plotted in figure 15 for this purpose 
and are self explanatory. In the low-h limit (V,),,, cc h except when q5 = &n in 
which case 0 as h --f 593. The curves, having passed through the inter- 
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mediate-A transition region, then asymptote to a high-h behaviour in which 
(Jb)max K A3 for all 9. 
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